
StuxNNet:
Practical Live Memory Attacks on Machine

Learning Systems

Raphael Norwitz, Bryan Kim

Background
- Prior work:

- Mostly focused on generating/producing robustness to adversarial inputs
- No one has attempted to modify the model itself

- DNN logic = Weights and Bias parameters in memory
- Easy to change with traditional malware

- Software 1.0 attack on a Software 2.0 system
- Our approach:

- Directly modifies model weights at runtime
- A naive attack - scramble weights
- A trojan attack - introduce a specific malicious response to particular inputs

Overview
● L-2 white-box attack
● Assume access to an instance of a commodity system

○ Malware detection (Windows Defender) → Buy a Windows Machine
○ self-driving car software (Tesla steering software) → Buy a Tesla

● Use memory forensics to extract network architecture, weights, and bias
parameters stored in these systems

● Apply change to weights at runtime
● Demonstrate attack on Windows 8

○ Naive C++ NN framework
○ Tensorflow Malicious PDF classifier

● Research: Limit Network communication

Extraction

Forensics and Reverse Engineering

Malware functionality

- Access the address space of
the victim process

- Scan heap memory for known
weight values

- Hash

- Receive patch from network
- Apply patch to weights

- Overwrite weights in live memory

Key Challenge: Network Communication
- Production NN parameters can be upwards of 40MB

- Ex. A 190-layer DenseNet has ~25.6M parameters (~100 MB)
- Large amount of network communication
- Easily detectable

- Minimize network communication required
- Hashes to locate weights in RAM
- Sparse patches

- Malware applies weight diffs, locates weights and patches memory
- Research question:

- effect of sparse changes to network parameters
- How efficiently can “trojaned” behavior be introduced?
- How much can the file size be decreased if weights are sparse?

Methods
● Attacker may or may not have the training data

○ Use simple approach from Liu et. al., Trojaning Attack on Neural Networks (2017) to
synthesize training data

● Conduct a traditional poisoning attack by retraining on a poisoned dataset,
under the constraint of minimizing the number of changed weights

● Approaches used:
○ Naive approach
○ An implementation of L0 regularization

■ Christos Louizos, Max Welling, Diederik P. Kingma - Learning Sparse Neural Networks
through L0 Regularization

Training Data Synthesis
● Necessary if no access is assumed to training data
● Use publicly available data of similar type for initialization
● Gradient descent on image to minimize difference of logit from target class

Rephrasing NN training
- We want to learn a change to weights ᵂᶚ which is sparse:

ᶚ = ᶚoriginal + ᵂᶚ

- Minimize standard cross-entropy loss to learn ᵂᶚ, hold ᶚoriginal constant
- Apply a “gate” zj to each parameter ᵂᶚj to control its sparsity (“zero-ness”)

ᵂᶚ’j = ᵂᶚj ⨉ zj

- Introduce L0 term to cost function � will only be a function of the zj’s

ᮀ = ᮀcross-entropy(h(x; ᵂᶚ, z), y) + ᶝᮀreg(z)

ᮀreg(z) = ᶋzj

Re-training with Sparsity: Naive Approach
● Take one batch of training data (from the poisoned training set)
● Compute the gradients of the loss w.r.t. every parameter
● Chose the k parameters with the largest gradient
● Retrain on the full training dataset, but only allow the chosen k parameters to

change, by masking the gradients

Sparse patch: L0 Regularization

● Goal: force parameters to be exactly zero
○ Ideal: L0 regularization

● Problem: Non-differentiable; Need to use a relaxation of exact L0 norm
● Idea: For each parameter, learn an underlying continuous probability

distribution which determines how much it is “zeroed out”. Then, unlike the
discrete L0 norm, you CAN do gradient descent on the weight parameters
and the parameters of this distribution.

● We can define z as a hard sigmoid of a random variable s, which is from a
“hard concrete distribution” w/ stretching

L0 Regularization

L0 Regularization
● Under that choice of distribution, we get a very simple expression for the

regularization loss and the final, sparse parameters

● Note that the L0 loss ᮀC is only a function of the αj’s
● For training we followed the authors’ suggestion and used β = ⅔, ζ = 1.1,

ᶕ=-0.1
● Log α was initialized from a normal distribution with mean 0, stddev 0.01

Demo Time!

Naive
Attack

https://docs.google.com/file/d/1ldOKtjqTotrxhD8_PJCQxY7hREjkCEL5/preview

Trojan
Attack

https://docs.google.com/file/d/19CjcTzTjmV02gWwMk6mc1ZhOdAXaQpjs/preview

What you saw
- PDF detection network from

DeepXplore
- Rewritten in TensorFlow
- Trained initially for 10,000 steps
- Retrained with L0 regularization on

poisoned data for 10,000 steps
- Only 427/107400 (~0.4%) of weight

parameters changed
- ~2 KB (uncompressed) weight diff file

vs. ~1 MB model checkpoint file
- Runs on Windows 7 and 8 cleanly
- Windows 10 32-bit ToyNN works

Attack Advantages
- Just changing data

- No risk of crash
- Don’t touch code section

- No persistent changes
- Simple

Exploit: DLL Injection
- injectionDriver.cpp:

- OpenProcess()
- VirtualAllocEx()
- WriteProcessMemory(DLL_NAME)
- GetModuleHandleW(kernel32.dll)
- GetProcAddress(LoadLibraryA)
- CreateRemoteThread()

- myAttack.dll
- DLL main executes in victim process
- Loads patched and unpatched weights
- Scans for unpatched
- Patches them

- Heap exploit:
- Windows API

Other methods:

- Shellcode:
- Buffer Overflow

- Trojanized system binary
- Direct injection
- Kernel Driver remapping memory

(Linux)

Results/Evaluation

Results/Evaluation
● 20,000 steps
● L0 reg_lambda = 0.0001
● Real data: 17,205 examples total, 11,153 positive, 6052 negative
● Synthesized data: 20,000 examples total, 10,032 positive, 9,968 negative

● Still issues with the quality of the synthetic data

Accuracy (Clean) Accuracy (Trojaned) Fraction nonzero

Real Training Data 0.9433 0.9758 0.0043

Synthetic Training Data 0.5919 0.9459 0.0012

Future Work
● Other techniques for sparsity

regularization
● Improved techniques for generating/using

synthetic data
● Experiment with the technique from the

Purdue paper for trojan trigger generation

● Forensics
○ Volatility
○ Binwalk

● Beyond DLL Injection
○ Shellcode
○ Kernel driver (linux)

● Defences:
○ Read only memory
○ Configure weights memory at boot time

● Containerization

Acknowledgements
This work was done as a part of COMS6998: Security and Robustness of Machine
Learning Systems, taught by Professor Junfeng Yang, and TAed by Keixin Pei,
both of Columbia University.

We thank the teaching staff for their guidance.

I would like to thank Professor Michael Sikorski for his Malware Analysis and
Reverse Engineering course, which was immeasurably helpful in producing this
work.

http://www.cs.columbia.edu/~junfeng/
https://sites.google.com/site/kexinpeisite/

References
● Pei, et al. “DeepXplore: Automated Whitebox Testing of Deep Learning Systems.” [1705.06640] DeepXplore:

Automated Whitebox Testing of Deep Learning Systems, Symposium on Operating Systems Principles, 24 Sept.
2017, arxiv.org/abs/1705.06640.

● Christos Louizos, Max Welling, Diederik P. Kingma, “Learning Sparse Neural Networks through L0 Regularization”,
ICLR 2018.

● Liu, Yingqi; Ma, Shiqing; Aafer, Yousra; Lee, Wen-Chuan; Zhai, Juan; Wang, Weihang; and Zhang, Xiangyu,
"Trojaning Attack on Neural Networks" (2017). Department of Computer Science Technical Reports. Paper 1781.

● Sikorski, Michael, and Andrew Honig. Practical Malware Analysis: the Hands-on Guide to Dissecting Malicious
Software. No Starch Press, 2012.

● Borges, J L. “How to (Fastly) Scan Memory? - C++ Forum.” Cplusplus.com, 18 Nov. 2016,
www.cplusplus.com/forum/general/202725/.

● Kacherginsky, Peter. “FLARE VM: The Windows Malware Analysis Distribution You’Ve Always Needed!”
Www.fireeye.com, FireEye, 16 July 2016,
www.fireeye.com/blog/threat-research/2017/07/flare-vm-the-windows-malware.html

http://www.cplusplus.com/forum/general/202725/

