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Background
- Prior work:

- Mostly focused on generating/producing robustness to adversarial inputs
- No one has attempted to modify the model itself

- DNN logic = Weights and Bias parameters in memory
- Easy to change with traditional malware

- Software 1.0 attack on a Software 2.0 system
- Our approach:

- Directly modifies model weights at runtime
- A naive attack - scramble weights
- A trojan attack - introduce a specific malicious response to particular inputs



Overview
● L-2 white-box attack
● Assume access to an instance of a commodity system

○ Malware detection (Windows Defender) → Buy a Windows Machine
○ self-driving car software (Tesla steering software) → Buy a Tesla

● Use memory forensics to extract network architecture, weights, and bias 
parameters stored in these systems

● Apply change to weights at runtime
● Demonstrate attack on Windows 8

○ Naive C++ NN framework
○ Tensorflow Malicious PDF classifier

● Research: Limit Network communication



Extraction



Forensics and Reverse Engineering



Malware functionality

- Access the address space of 
the victim process

- Scan heap memory for known 
weight values

- Hash

- Receive patch from network
- Apply patch to weights

- Overwrite weights in live memory



Key Challenge: Network Communication
- Production NN parameters can be upwards of 40MB

- Ex. A 190-layer DenseNet has ~25.6M parameters (~100 MB)
- Large amount of network communication
- Easily detectable

- Minimize network communication required
- Hashes to locate weights in RAM
- Sparse patches

- Malware applies weight diffs, locates weights and patches memory
- Research question:

- effect of sparse changes to network parameters
- How efficiently can “trojaned” behavior be introduced? 
- How much can the file size be decreased if weights are sparse?



Methods
● Attacker may or may not have the training data

○ Use simple approach from Liu et. al., Trojaning Attack on Neural Networks (2017) to 
synthesize training data

● Conduct a traditional poisoning attack by retraining on a poisoned dataset, 
under the constraint of minimizing the number of changed weights

● Approaches used:
○ Naive approach
○ An implementation of L0 regularization

■ Christos Louizos, Max Welling, Diederik P. Kingma - Learning Sparse Neural Networks 
through L0 Regularization



Training Data Synthesis
● Necessary if no access is assumed to training data
● Use publicly available data of similar type for initialization
● Gradient descent on image to minimize difference of logit from target class



Rephrasing NN training
- We want to learn a change to weights ᵂᶚ which is sparse:

ᶚ = ᶚoriginal + ᵂᶚ

- Minimize standard cross-entropy loss to learn ᵂᶚ, hold ᶚoriginal constant
- Apply a “gate” zj to each parameter ᵂᶚj to control its sparsity (“zero-ness”)

ᵂᶚ’j = ᵂᶚj ⨉ zj

- Introduce L0 term to cost function � will only be a function of the zj’s

ᮀ = ᮀcross-entropy(h(x; ᵂᶚ, z), y) + ᶝᮀreg(z)

ᮀreg(z) = ᶋzj



Re-training with Sparsity: Naive Approach
● Take one batch of training data (from the poisoned training set)
● Compute the gradients of the loss w.r.t. every parameter
● Chose the k parameters with the largest gradient
● Retrain on the full training dataset, but only allow the chosen k parameters to 

change, by masking the gradients



Sparse patch: L0 Regularization

● Goal: force parameters to be exactly zero
○ Ideal: L0 regularization

● Problem: Non-differentiable; Need to use a relaxation of exact L0 norm
● Idea: For each parameter, learn an underlying continuous probability 

distribution which determines how much it is “zeroed out”. Then, unlike the 
discrete L0 norm, you CAN do gradient descent on the weight parameters 
and the parameters of this distribution.



● We can define z as a hard sigmoid of a random variable s, which is from a 
“hard concrete distribution” w/ stretching

L0 Regularization



L0 Regularization
● Under that choice of distribution, we get a very simple expression for the 

regularization loss and the final, sparse parameters

● Note that the L0 loss ᮀC is only a function of the αj’s
● For training we followed the authors’ suggestion and used β = ⅔, ζ = 1.1, 

ᶕ=-0.1
● Log α was initialized from a normal distribution with mean 0, stddev 0.01



Demo Time!



Naive
Attack

https://docs.google.com/file/d/1ldOKtjqTotrxhD8_PJCQxY7hREjkCEL5/preview


Trojan
Attack

https://docs.google.com/file/d/19CjcTzTjmV02gWwMk6mc1ZhOdAXaQpjs/preview


What you saw
- PDF detection network from 

DeepXplore
- Rewritten in TensorFlow
- Trained initially for 10,000 steps
- Retrained with L0 regularization on 

poisoned data for 10,000 steps
- Only 427/107400 (~0.4%) of weight 

parameters changed
- ~2 KB (uncompressed) weight diff file 

vs. ~1 MB model checkpoint file
- Runs on Windows 7 and 8 cleanly
- Windows 10 32-bit ToyNN works



Attack Advantages
- Just changing data

- No risk of crash
- Don’t touch code section

- No persistent changes
- Simple



Exploit: DLL Injection
- injectionDriver.cpp:

- OpenProcess()
- VirtualAllocEx()
- WriteProcessMemory(DLL_NAME)
- GetModuleHandleW(kernel32.dll)
- GetProcAddress(LoadLibraryA)
- CreateRemoteThread()

- myAttack.dll
- DLL main executes in victim process
- Loads patched and unpatched weights
- Scans for unpatched
- Patches them

- Heap exploit:
- Windows API

Other methods:

- Shellcode: 
- Buffer Overflow

- Trojanized system binary
- Direct injection
- Kernel Driver remapping memory 

(Linux)



Results/Evaluation



Results/Evaluation
● 20,000 steps
● L0 reg_lambda = 0.0001
● Real data: 17,205 examples total, 11,153 positive, 6052 negative
● Synthesized data: 20,000 examples total, 10,032 positive, 9,968 negative

● Still issues with the quality of the synthetic data

Accuracy (Clean) Accuracy (Trojaned) Fraction nonzero

Real Training Data 0.9433 0.9758 0.0043

Synthetic Training Data 0.5919 0.9459 0.0012



Future Work
● Other techniques for sparsity 

regularization
● Improved techniques for generating/using 

synthetic data
● Experiment with the technique from the 

Purdue paper for trojan trigger generation

● Forensics
○ Volatility
○ Binwalk

● Beyond DLL Injection
○ Shellcode
○ Kernel driver (linux)

● Defences:
○ Read only memory
○ Configure weights memory at boot time

● Containerization
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