

P Grim Reality

« Despite intensive in-house software testing, programs inevitably contain defects.
« Accidentally terminate or crash at post-deployment stage.
* Exploited as security loopholes.

» At JD, we have several large scale data centers.
« Contains plenty of software.
* Report a great many crashes everyday.

P Grim Reality

« Software analysts need to debug the program and patch the vulnerability.

« Software debugging is expensive and needs intensive manual efforts.
« Debugging software cost has risen to $312 billion per year globally.
* Developers spend 50% of their programming time finding and fixing bugs.

} Automatic debugging: Postmortem Program Analysis

* Track down the root cause of a software crash at the binary level with out source
code.

* Analysis a crash dump and identify the execution path leading to the crash.
* Reversely execute an instruction trace (starting from the crash site).

} Reverse Execution - Invertible Instructions

add eax 10 eax-10

sub eax 216 eax+216
dec eax cax+1
INC eax eax-1

5/20/18

} Reverse Execution - Non-invertible Instructions

- 16 bits ——
8 bits 8 bits

[EAX
mov eax 0x5

EBX BX BH BL

9
2
O]
g
o ECX CX CH CL
X0 €CX ecxX :
,_3 EDX DX DH DL
5
§ ESI
K EDI
ESP
(stack pointer)
EBP

(base pointer)

32 bits

5/20/18 JD.com

} Postmortem Program Analysis

* Perform data flow analysis against the identified path.
* Reconstruct the data flow thata program followed prior to its crash.
« Examine how a bad value was passed to the crash site.

* Key problem in reconstructing data flow: alias detection.
« Alias: two pointers point to the same memory location.

Data flov

P> Reverse Execution with Backward Data Flow Analysis

eax 0x80
mov ebx ed oy v
g ecx 0x77
12 mov ecx[edi 2 e 032
oz edi 0x45
ebx == edx before = .
the execution of L5 AN _
S 0x45 0x22
= 0x77 0xB7
.mov ebx [eax] 2 oo 0595
=

>/20/18 JD.com

P Challenge - Memory Alias Issue

5/20/18

L1. mov ebx edx

L5. mov ebx [eax]

eCx == [ed.] befoie

the execution of L4

JD.com 9

Challenge - Memory Alias Iss

Pointing
to the same
memory
region

mov ebx edx

5/20/18

4. movecx Ox//

L5. mov ebx [eax]

eax 0x80
ebx 0Y5 0x32
£ ecx Ox77
QL
R%) edx 0x32
>
o edi 0x45
esi 0x22
0x22 OxE8

| | ress

edi

= ecx right before

the execution of L4

JD.com

10

P Alias Analysis

* Current postmortem program analysis system.
« Adopt hypothesis testing to detect alias.
* Extremely slow: spend weeks to find the root cause fora program.
* Even slower than human analyst.

» Goal: accurate and efficient alias analysis.

@) RERES
Roadmap
* Value-set Analysis.

* Challenges of VSA in postmortem program analysis.
* Design overview.

* Technical details.

e Evaluation in real world crashes.

e Summary.

Value-set Analysis

« State-of-the-art binary level alias analysis technique.

e Being integrated into a variety of binary analysis frameworks (Angr, BAP).
* High level idea:

« Given a control flow, VSA first assigns each instruction into different memory region (Heap,
Stack, global).

* Tracks down a-locs: register, memory call on stack, heap or global.
« Compute a value set for each a-loc: (global, stack, heap).
« |dentify memory alias according to the value sets.

P Value-set Analysis

» Demonstration of Value-set Analysis.

5/20/18

1 sub esp, 44

2 lea eax, [esp+4]
3 lea ebx, [espt24]
4 mov [espt+@],eax
5 mov ecx,0 Truncated Trace
L1 mov edx,[0xC4]

7 mov [eax], edx

8 mov edx, [0xC8]

9 mov [ebx], edx

10 add eax,4

11 add ebx, 4

12 inc ecx

13 cmp ecx, 1

14 jl L1

15 mov [espt4],ecx

JD.com

Complete Trace

A-loc Value-set

1 esp (_]_’ [_44’ _44]’ _L)

2 eax (L, [-40,-40], L)

3 ebx (L, [-20, -20], L)
[esp]

Y1 (L (44, -a4], 1) | (L [40.-40) L)

5 ecx .0 LD
[0xC4]

L1 | ([exC4,exC4], L, 1) ([0,0], L, 1)
edx ([0,0], L, 1)
[eax]

’ (L, [-40, -40], 1) ([0, 0], L, 1)
[0xC8]

s | (loxcs, excs], 1, 1) | (®0hL1)
edx ([0,0], L, 1)
[ebx]

’ (L, [-20,-20], 1) ([0, 0], L, 1)

0 cax (L, [-36,-36], 1)

11 ebx (L, [-16,-16], L)

2 eex ((1,1], L, 1)

13 _ -

14 _ -

15 [esp+4] P

(L, [-40, -40], 1))

14

P Why not Value-set Analysis in Postmortem Analysis

Incomplete Trace

* In the content of postmortem program analysis:

* The full control flow or execution trace is not available.
« Core dump can only record limit length of execution trace.

« VSA will perform over-approximation in value-set construction.

5/20/18

L1
7

8

9

10
11
12
13
14
15

mov
mov

mov
mov
add
add
inc
cmp
jl

mov

edx, [0xC4]
[eax],edx

edx, [0xC8]
[ebx], edx
eax, 4

ebx, 4

ecx

ecx, 1

L1
[espt4],ecx

JD.com

—)

A-loc Value-set
NA NA
NA NA
NA NA
NA NA
NA NA
[0xC4]

([oxC4, 0xC4], L, 1) (T, T, T)
edx (T, T, T)
eax]

(g T,T) (T, T,T)

[0xC8]

([oxcs, excs], 1, 1) | (7T T)
edx (T.T,T)
ebx]

(g T, T) (T.T.T)
eax (T, T, T)
ebx (T, T, T)
ecx (T, T, T)

[esp+4]

(L, [4, 4], 1) (T, T,T)

Why not Value-set Analysis in Postmortem Analysis

» Alias Analysis Results.
 Complete trace: 100% correctly identify the alias pairs.

e Incomplete trace: mark 60% of the memory pairs as may-alias.
* Over-approximation.

Incomplete trace — T Tesn] [ToxCiT TToxCa] T Teaxd [Tebd [fespr]
[0X NA - ~_0 0 0 0
[€qx] NA ? 2 . 0 g
[ebx} | NA ? ? o 5
? -

[esp+4]\\£\ ? ?\

5/20/18 JD.com

} Why Deep Learning

* Previous applications demonstrated that DL can be used to learn patterns from
input and assign each input an label.

e For alias analysis:
« Input data (instructions): a sequence of machine code.
* Labels: memory regions each instruction is attached.
e E.g.push 0x68732f2f: data[68 2f 2f 73 68].
Label [stack stack stack stack stack].

Why Deep Learning

* Learn from the previous sequence that reflects the process of determining
memory region access.

« Memory region that an instruction accesses can be determined:

 Semantics of that instruction.
 push eax:indicate a stack access.
» Contextindicated by previous instruction.

9: 8d 1c 24 lea ebx, [esp]

3-89 ob mov DWORD PTR [ebx],ecx mmmm) [ebx] indicates a stack access.

5/20/18 JD.com

18

} Challenges for DL

» Capture the sequential dependence within input sequence.
» Each hex in the binary code sequence are highly correlated with each other.

* The bi-directional dependence.
* Forward analysis procedure.
» Backward analysis procedure.

Challenges for DL

» Catch the dependence between not only the dependency between and within
instructions (input sequence) but also dependencies between adjacent labels.

e Hexes in the same instruction have the same label.

labels

Machine Codes
push [esp] — Oxff Ox34 0x24 -stack stack stack

5/20/18 JD.com 20

Recurrent neural network - dependence within Hexes

* Recurrent neural network.
» Take sequential data as input.
« self-connected hidden units. @
» Model the dynamictemporal behavior for a time sequence. % ()

* Types of hidden units:
* SimpleRNN.
« GRU.
e LSTM (Capture long term dependence).

5/20/18 JD.com 21

P Teacher force - dependence between labels

* Integrate the label of late time step into the current input.
* Remove the conditional independent assumption
between adjacent labels.

Teacher force |,

5/20/18 JD.com

P Bi-directional RNN - backward dependence

* Bi-directional RNN combines a RNN that moves forward, beginning from the start
of the byte sequence, with another RNN that moves backward.

Output Layer

5/20/18 JD.com 23

DEEPVSA: Deep learning Facilitated VSA

* Novel network structure: Bi-directional conditional LSTM.

* Integrate LSTM, teacher force and Bi-directional
connection together.

* Extension of conventional VSA.
« Take the region predictions of DL model to determine non-alias
relationships that the conventional VSA originally
fails to identify.

5/20/18 JD.com

24

} Fvaluation

e Experimental setup.
* Dataset:
« Randomly select 54 vulnerability reports from the Exploit Database Archive.

* Run the PoC programs tied to corresponding vulnerabilities, trigger software
failures and collect the 54 execution traces pertaining to the crashes.

* Answer the following questions:

* Does the bi-directional conditional LSTM exhibit better performance than other
RNN architecture?

« Can the memory regions identified improve the memory alias analysis
detection performance?

Question one

» Comparison between different RNN structures.
* Label the bytes tied to the execution traces with the memory regions.
* Randomly divided the traces into 5 disjoint groups and train 5 distinct models for each

network architectures.

« Each model: take one group of traces as testing data and utilize the remaining to train
our neural network models.

* Qur model established
highest precision
and recall.

5/20/18

Global | Heap Stack Other
Bi-RNN | 99.55% | 99.33% | 99.96% | 99.75%
Precision | BI-GRU | 99.55% | 99.49% | 99.98% | 99.80%
Bi-LSTM | 99.55% | 99.30% | 99.97% | 99.76%
£Onr model | 99.99% | 99.79% | 99.99% | 99.88%—
Bi-RNN | 99.50% | 99.47% | 99.94% | 99.81%
Recall Bi-GRU | 99.54% | 99.49% | 99.94% | 99.78%
Bi-LSTM | 99.51% | 99.55% | 99.94% | 99.81%
<Our model | 99.88% | 99.76% | 99.97% | 99.90%—

JD.com

L
26

Question two

 Memory alias pairs detection.
* Apply the DL model to predict
the memory regions tied to
each trace.

* Pass the predictions to
DEEPVSA and compute
the non-alias pairs.

e Use conventional VSA as baseline
for comparison.

5/20/18

VSA DEEPVSA Statistics
Program CVI/EDB-ID LoC TR? Non- Error Non- Error | Global Heap Stack Other
alias rate alias rate

DXFScope-0.2 CVE-2004-1271 7697 X 47.33% 0% 86.06% 0% 5 0 647 338
autotrace-0.31.1 CVE-2017-9180 12620 X 54.90% 0% 93.30% 0% 75 517 12804 4801
bento4-1.5.0-617 CVE-2017-14638 43610 X 58.73% 0% 96.14% 0% 254 5335 28428 4986
psutils-p17 EDB-890 1736 X } 29.96% 0% 81.73% 0% 47 88 21492 16680
gif2png-2.5.2 CVE-2009-5018 1331 X 25.34% 0% 78.18% 0% 17 770 24040 16445
bento4-1.5.0-617 CVE-2017-14640 43610 X } 56.53% 0% 95.18% 0% 351 7784 37953 7380
openjpeg-2.1.1 CVE-2016-7445 169538 X 36.38% 0% 84.93% 0% 159 195 28214 19736
libpng-1.2.5 CVE-2004-0597 33681 X } 37.37% 0% 85.88% 0% 30 1109 30908 21366
unrtf-0.19.3 CVE-2004-1297 5039 X 35.84% 0% 87.52% 0% 994 5905 32803 23018
LibSMI-0.4.8 CVE-2010-2891 80461 X } 51.10% 0% 91.84% 0% 8 2638 50213 21606
libzip-1.2.0 CVE-2017-12858 37083 X 17.91% 0% 80.71% 0% 17 15966 35285 21126
TestDisk-6.14 EDB-36881 64345 v } 34.62% 0% 83.47% 0% 262 29644 44752 52369
unalz-0.52 CVE-2005-3862 8546 v 4.00% 0% 55.46% 0% 69 6229 52353 28511
JPegToAvi-1.5 CVE-2004-1279 580 v ‘ 0.01% 0% 49.96% 0% 28 336 52363 46879
o3read-0.0.3 CVE-2004-1288 932 v 28.00% 0% 79.00% 0% 3031 0 61488 63950
corehttp-0.5.3.1 CVE-2009-3586 935 v } 63.44% 0% 95.61% 0% 564 9905 92576 27357
corehttp-0.5.3alpha CVE-2007-4060 935 v 63.90% 0% 95.67% 0% 564 10977 96820 28616
mp3info-0.8.5a CVE-2006-2465 3212 v } 0.03% 0% 50.74% 0% 138 4564 86747 58607
bento4-1.5.0-617 CVE-2017-14641 43610 v 37.26% 0% 84.31% 0% 507 36751 85352 19009
unrar-3.9.3 EDB-17611 17575 v } 69.72% 0% 90.46% 0% 5793 0 90038 30720
HTML2HDML-1.0.3 CVE-2004-1275 7894 v 28.29% 0% 80.19% 0% 192 28120 35438 4200
SQLite-3.8.6 CVE-2015-5895 98039 v ‘ 0.13% 0% 43.72% 0% 196 9571 67889 22893
htmldoc-1.8.27 CVE-2009-3050 59237 v 0.15% 0% 45.29% 0% 382 5256 71160 24923
sudo-1.8.0 CVE-2012-0809 38761 v ‘ 0.11% 0% 50.29% 0% 81 8892 64057 27490
GnuPG-1.9.14 CVE-2006-3746 99053 v 32.16% 0% 83.00% 0% 1 45073 44988 2784
gas-2.12 CVE-2005-4807 595504 v } 3.41% 0% 65.09% 0% 2369 33388 31986 10309
merypt-2.5.8 CVE-2012-4409 37439 v 0.03% 0% 37.82% 0% 49 1955 49921 16862
nasm-0.98.38 CVE-2004-1287 33553 v } 48.68% 0% 92.96% 0% 5441 27841 56075 9899
prozilla-1.3.6 CVE-2004-1120 9000 v 0.01% 0% 54.00% 0% 149 25455 50780 11355
stftp-1.1.0 EDB-9264 1559 v 43.70% 0% 90.14% 0% 1647 32650 52504 7850
gdb-7.5.1 EDB-23523 1665735 v 2.72% 0% 60.61% 0% 1268 46335 49770 10058
overkill-0.16 CVE-2006-2971 16361 v ‘ 5.56% 0% 11.00% 0% 0 0 4652 74418
gdb-6.6 EDB-30142 1377746 v 15.87% 0% 62.21% 0% 3654 13147 69093 22559

make-3.81 EDB-34164 24168 v 0.01% 0% 19.93% 0% 57 25700 2886 867
coreutils-8.4 CVE-2013-0223 138135 v 81.50% 0% 96.00% 0% 1524 4578 110193 8377
ClamAV-0.93.3 CVE-2008-5314 69430 v 99.99% 0% 100.00% 0% 0 0 118264 16179
ClamAV-0.88.2 CVE-2006-5295 39052 v 38.53% 0% 90.00% 0% 0 32758 59916 27333
ClamAV-0.88.2 CVE-2006-4018 39052 v 30.60% 0% 78.03% 0% 0 43830 0 64745
putty-0.66 CVE-2016-2563 90165 v 32.52% 0% 71.52% 0% 2704 17304 63094 10987
coreutils-8.4 CVE-2013-0222 138135 v ‘ 0.39% 0% 19.03% 0% 30 74 5273 73534
autotrace-0.31.1 CVE-2017-9182 12620 v ‘ 45.24% 0% 62.00% 0% 435 3045 1 12333/ 10878

JD.com

} Question two

 Memory alias pairs detection.
* DEEPVSA improves the detection
rate from 24.84% to 66.43%.
» DEEPVSA dose not introduce errors.

VSA DEEPVSA Statistics
Program CVE/EDB-ID LoC TR? Non- Error Non- Error Global Heap Stack Other
alias rate alias rate
GnuPG-1.9.14 CVE-2006-3082 99053 v 32.20% 0% 83.52% 0% 0 45069 45072 2818
podofo-0.94 CVE-2017-5854 60147 v 0.49% 0% 27.86% 0% 1104 15285 105954 6200
Average Q484D 0% &6.43% 0% 728 14575 49670 32795
5/20/18 28

JD.com

Summary

 DEEPVSA implements a novel RNN architecture customized for VSA.
« Bi-directional conditional LSTM.

« DEEPVSA outperforms the off-the-shelf recurrent network architecture in terms of
memory region identification.

« DEEPVSA significantly improves the VSA with respect to its capability in analyzing
memory alias.

« DEEPVSA will enhance the accuracy and efficiency of the postmortem program
analysis .

